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Linearity Condition Between a Cavity’s
Q-Factor and Its Input Resonant Resistance

\ Baigiang Tian and Wayne R. Tinga

Abstract— This paper proves that a linear relationship between a
cavity’s ()-factor and its input resonant resistance holds rigorously true
provided the () variation is caused only by power loss in the cavity.

1. INTRODUCTION

In [1], the authors proved that a cavity Q-factor, (), is proportional
to the normalized input resonant resistance, R, of this cavity, i.e.,

Q
B C €]
where C is a constant provided a moderate perturbation condition is
satisfied. This condition implies that the degree of the proportionality
between R and () depends on the degree of the perturbation,
suggesting (1) is not a rigorous equation. Moreover, even as an
approximate equation, (1) was said to be true only over a small
range of (), as the @ change allowed under a perturbation condition
is generally assumed small [2].

However. our recent experimental data, given in Fig. 1, shows that
(1) holds true over a large range from about 4000 down to at least
60. This fact suggests that, firstly, (1) may be a rigorous equation
because the discrepancies between the measured () values and those
predicted by @Q = C'R were not significant. (Note that the error in
() measurement alone could be as large as 14% when using a 30 dB
directivity coupler in the reflectometer [1]). Secondly, (1) can hold
trae without imposing a perturbation condition or the assumption of
small () variation.

As both @ and R are important parameters in microwave en-
gineering, and in particular, as (1) allows significantly simplified
relative ¢} measurements by replacing a complex J measurement
with a convenient input resistance measurement (through a reflection
coefficient measurement), it is important to know whether (1) is
approximate or rigorous and under what condition it holds. In this
short paper, using a different approach from that in [1], we prove
that (1) is rigorous and holds true as long as the cavity () variation
is caused only by the power loss in the cavity. Consequently, the
previously imposed condition of a small () variation or a moderate
perturbation is not necessary [1].

II. THEORETICAL PROOF
By definition

wW
Q=5 @
and
‘/*2
R= 5P, 3)

where w is the angular resonant frequency, Pr, is the power loss in the
cavity. W™ is the energy stored in the cavity and V' is the equivalent
RF voltage at the reference plane where R is defined (see Fig. 2).
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Fig. 1. Measured @ and R values, compared with the calculated @ from

() = CR. The table shows the numerical data and the figure plotted from
them shows the excellent agreement between the measured ¢ and the straight
line predicted by equation @ = C'R, demonstrating the true linear relation
between @ and R over a large range. (C' = Q/R = 1153/1.97 = 585. The
measurement techniques used were given i [1]).

' Transmission line

Cavity

Fig. 2. An arbitrary cavity and its coupling reference plane, ab.

Dividing (2) by (3), we have

Q w

When resonating, the electric energy, V., stored in the cavity equals
the stored magnetic energy, W,,. Thus the total energy, W, is

W= 2W, = %///E CE*dv (5)
/

where < is the permittivity of the medium uniformly filling the cavity.
At the reference plane ab (see Fig. 2), the RF voltage, V', can be

expressed as
b 2
V= ( / E-dl) 6
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Substituting (5) and (6) for ¥ and V5 in (4), we have

:A/V//E-E*dv

3 @

(=)

where A = wes, a constant at a given w and ¢. (7) shows that the
only requirement to guarantee the proportionality of (Q and R, or the
validity of (1) is

~————————— = B = constant. 8)

([z-a)

In the following, we are to prove that (8) holds no matter how large
the () variation so long as such a change is caused only by a change
in the power loss, Pr.

According to [3], Fr and W are both proportional to the square
of the field strength; thus P, at any instant of time is proportional
to W, ie.,

=0

aw

where o« is an attenuation factor.
The solution of (9) is

-2t

W = Woe (10)
and
wW w
Q= P T 54 amn

Equation (11) shows that the () is determined by a for a given w.
Because of (10), E at this instant can also be expressed as

B = FEye™* 12)

where E is the spatial distribution of E. Substituting (12) for I in

(8), we obtain
// E.E*dv
_

b 2
([
eAQ“t///Eo - E§ dv
&

b 5= Do
e—2at (/ Eqy - dl)

which indicates that the constant B is not a function of «, and,
therefore, not a function of () either for a given frequency. Con-
sequently, any @ variation caused by a power loss variation in the
cavity would not alter the constant ' in (1). Therefore, (1) holds
over an unlimited () range.

In practice, () variation can be caused by the variation in the power
loss and by the variation in the field spatial distribution, Eq. For the
former case, we have proved (1) to hold, However, for the latter case,
(1) may or may not be valid depending on whether the constant B is
altered as a result of the variation in Fy, for, in essence, validation
of (1) only requires invariance of the constant B. Note that B is a

(13)

ratio of two integrals of Ey; a change in Ej, particularly, a small
local change as in all perturbations, does not necessarily change this
ratio. Therefore, a linear relation between (7 and R holds not only
in the situations where the @ variation is caused by the variation in
power loss, but also in many situations where the field distribution has
somehow been changed but the constant B does not. We have recently
applied this concept in the design of a self-heating single-frequency
high temperature dielectrometer with excellent results.
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Transient Analysis of Lossy Coupled Transmission Lines in
a Lossy Medium Using the Waveform Relaxation Method

F. C. M. Lau and E. M. Deeley

Abstract—The waveform relaxation method has been shown to be both
efficient and accurate when applied to coupled transmission lines with
conductor losses. In this paper, the method is generalized to include the
dielectric loss surrounding the transmission lines. The distributed loss
model assumes that the conductance matrix is approximately diagonal
and its product with the resistive matrix is a scalar matrix. Computa-
tional results using the model is presented and compared with HSPICE
solutions.

I. INTRODUCTION

Recently, the method of characteristics has been generalized by
Chang [1] for waveform relaxation analysis so that time-domain sim-
ulations of lumped-parameter networks interconnected with coupled
transmission lines can be carried out more efficiently. It has been
shown by the present authors [2] that solution problems related to
the presence of dc components can arise, leading to a complete
breakdown of the iterative process, and a modified iterative algorithm
has been proposed to overcome these problems. In this paper, the
dielectric leakage of the medium in which the transmission lines are
embedded is taken into consideration.

II. COUPLED LINES WITH PARTICULAR
CONDUCTOR AND DIELECTRIC LOSS MATRICES

Under general conditions, the voltages and currents along a set of
lossy coupled transmission lines, each of length [, are described by
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